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I

ABSTRACT ]
Wind tunnel tests were conducted on a one-third scale

model of the USAF NKC-135 airborne laser turret and aero-

dynamic fairing. The model was constructed so that six main

parameters could be varied as follows: fairing nosepieces,

fuselage bleed slot position and condition (porous/non-

porous), suction duct throttle position, blower suction

throttle position, and the turret-fairing gap. The method

of flow control employed to produce quiescent air flow about

the turret was that of fuselage boundary layer and after-

body fairing suction.

Results of the extensive testing indicate that the method

is viable for low velocity, incompressible air flow. Addi-

tionally, optimum conditions (i.e. minimum suction required

and the best combination of other parameters necessary to

provide quiescent flow) were determined.
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•, COMMENT CONCERNING JOINT RESEARCH

This thesis and Boundary Layer Control of a High Energy

Laser TurretUsingSuction of Trapped Vortices, a thesis by

LT James A. Burd (Ref. 1], were the result of a joint re-

search project begun at the Naval Postgraduate School by
LT James Schonberger and LT Alan Mandigo. The flow control

concept, experimental apparatus, and the instrumentation

were common to both theses. This thesis involves extensive

testing of fairing nosepieces designed by Schonberger and

Mandigo while Ref. 1 involves the design and testing of a

nosepiece based on the trapped vortex concept.
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I. INTRODUCTION

"A. BACKGROUND

A high energy laser destroys targets by concentrating

large amounts of radiant thermal energy onto a small area.

Any distortion or jitter of the optical beam tends to smear

"the beam footprint on the target, thus resulting in a lower

power to area ratio and decreasing the likelihood of target

destruction. Beam distortion can result when the laser beam

propagates through air with varying density caused by turbu-

lence. Beam jitter can be caused by the unsteady aerodynamic

effects on the laser test platform.

The test bed aircraft for the airborne gas dynamic high

energy laser (HEL) is operating from the Air Force Weapons

Laboratory, Kirtland Air Force Base, New Mexico. Experi-

merts are being conducted using two NKC-135 aircraft (one

containing a carbon dioxide HEL with external turret-fairing

and the other containing extensive data collection instru-

i. ments).

Testing of a on'j-third scale turret-fairing model was j

started at the Naval Postgraduate School (NPS) in 1980.

Using fuse!.&,e boundary layer suction and suction applied

through the fairing behind the turret, flow control was

established a-ound the HEL turret. Two fairing nosepieces

were designed and preliminary testing conducted by

17
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Schonberger fRef. 2] and Mandigo jRef. 3]. Results of these

tests indicate that attached quiescent flow can exist to a

turret azimuth angle of at least 1500. This larger rearward

"angle is favorable in that the coverage of the airborne laser

turret pointer tracker is enhanced.

B. THEORETICAL FLOW

The airborne laser turret is essentially a hemisphere

mounted on top of a finite cylinder (Fig. 1). Schlichting

[Ref. 4], among others, gives the theoretical surface pres-/

sure distribution as follows:

p - POO

Cylinder: Cp = = 1 - 4 sin 2 e (1)
q -

p - P OO
____9 2

Sphere: C = sin (2)
q

oV2PV".
where q 2 or free-stream dynamic pressure, P. is free-

stream static pressure, P is static pressure at a specific

station, and 0 is the angular location of the specific sta-

tion referenced to 6 = 00 or forward (Fig. 2). These dis-

tributions are presented graphically (Fig. 3, 4 and 5).

Notice that from the forward stagnation point 8 - 00, to

8 = 900, the pressure decreases, indicating attached lami-

nar flow. However, from 6 = 90 to 8 = 180°, or the rear

stagnation point, the pressure increases, indicating an

adverse pressure gradient. This results in flow separation,

18
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H I

which consists of shed vortices and recirculation over both

the sphere and the cylinder. Such turbulent flow, with

Sassociated density variation, severely affects laser beam

propagation in addition to causing turret vibration problems.

I' iEquations (1) and (2) deal with two dimensional flow.

For the flow around the turret, a pressure distribution

I. somewhere between that of a sphere and a cylinder can be

expected. This is due to the three dimensional effects of

sphere-cylinder interaction.

Thus, any method of flow control that perm•its a neutral

or decreasing pressure gradient between 0 = 900 and e = 1800

is desirable. Furthermore, a favorable pressure gradient

that extends further aft permits larger aft look-back

angles for the laser beam. This would be an important

consideration for tactical applications.

C. FLOW CONTROL METHODS

"Various methods to control the turbulence around air-

craft turrets have been proposed and include: porous

standpipe, slot blowing, trapped vortices [Ref. 1], and

base suction. The method selected for testing involves

suction applied at both the turret base and through an

aerodynamic fairing mounted aft of the turret [Ref. 2 and

3]. Quiescent flow can then be obtained around the turret

by applying suction. This method is advantageous in that

no modifications to the turret are required and aircraft

19
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structural modifications are minimized. However, the fairing

limits laser look-back angle.

D. THESIS OBJECTIVE

Table 1 lists the variables associated with flow control

about the laser turret and their ranges. Clearly, the num-

ber of possible combinations of setting could number in the

thousands and would prove to be an insurmountable data col-

lection and interpretation task. However, it would be ex-

pected that by logical selection, trends can be established

that would eliminate the majority of these cases.

The goal of this thesis is to determine the minimum

amount of suction required to achieve quiescent flow around

the turret. The parameter settings with this minimum suc-

tion will be considered optimum conditions for the system.

:ii '
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II. EXPERIMENTAL APPARATUS

A. PHYSICAL COMPONENTS

The major experimental components were a one-third scale

turret and aerodynamic fairing (Fig. 1) mounted on the floor

of the NPS 5x5 wind tunnel, a five section suction duct

housing, and an aerovent centrifugal blower with drive motor

(Fig. 6). Two interchangeable fairing nosepieces were em-

ployed: uniform - iformal nosepiece (UCN) (Fig. 7) and

tapered symmetric nosepiece (TSN) (Fig. 8). The physical

apparatus was essentially that described in References 2 and

3 except as noted below.

The turret base plate was modified to accept a covering

of perforated metal sheeting. With this sheet attached to

the fuselage bleed slot (Fig. 1), a porous condition could

be simulated and with it removed, a non-porous condition

-resulted. Figure 9 illustrates a full scale view of the

perforated sheeting pattern. The 5/16 in. octagons and

1/8 in. circles equate closely to 15/16 in. and 3/8 in.

holes that could be used on full-scale applications for

porous bleed slots.

Due to the unreliable fluctuating velocity readings in

the suction ducts with pitot-static tubes, a different

method using propeller anemometers was employed. These

devices consisted of low friction, low torque precision DC

21



motors on which model aircraft or boat propellers were

mounted according to suction duct size (Fig. 10). The
motors were mounted on stainless steel tubing at the same I
location as the pitot-static probes. The propeller ane-

mometers were calibrated in the NPS 32 x 45 wind tunnel over

the range of expected velocities. Using the Hewlett-Packard

9830 calculator/plottev, this data could be curve fitted to

second degree equations expressing velocity as a function of

voltage. A blockage factor due to duct size was applied and

the resulting equations are given in Appendix A. V

Voltage readings from the propeller anemometers were

favorably steady with the exception of Duct #3. An aluminum

frame surrounding honeycomb material was constructed and in- -
serted into Duct #3. This straightened the air flow suf-

ficiently to permit that propeller anemometer to function . j
properly.

B. INSTRUMENTATIO0

Pressure taps located on the turret (Fig. 2) and along

the wind tunnel wall were renumbered to ease the data ac-

quisition process. Tygon tubing connected these locations

to a forty-eight port scanivalve/pressure transducer. The

locations of these ports are presented in Table 2. This

pressure transducer was then connected to an Intel 80/10

computer system from which a voltage readout could be ob-

tained that was linear with pressure. A teletypewriter set

22
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AN/UGC-59A was used to record this data. Appendix B offers

J. aan example of calculating the pressure coefficient using

these numbers from two sets of sample data (Tables 3 and 4).

The propeller anemometers were connected via a wiring

harness to a five position switch which in turn was connected

to a digital multimeter. Voltage measurements could then be

recorded manually and converted to velocities with a pro-

grammable handheld calculator.

Yarn tufts were affixed strategically to the turret to

visually observe locations of turbulence and quiescent flow.

Qualitative cornments could be made for each case based on

the motion or lack of motion of these tufts.

23
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11. EXPERIMENTAL M•ETHOD

A. CONDITION CODES AND GRAPH KEYS

A bookkeeping system was needed to maintain order among

the various paramet.:rs for each trial run. Consequently, a

code was developed listing the fixed and the variable con-

ditions as follows:

A / B / C /D /E /F /G where

A = type of nosepiece (UCN or TSN)

B = fuselage bleed slot position (F--forward, S--side, A--Aft)

C F.B.S. porous (P) or non-porous (NP)

D duct throttles #1 - #5 position (0--open, -half open,

C--closed)

E turret-fairing gap (in inches)

F blower suction throttle (% as indicated on throttle

lever)

1G TSN inlet door position (TSN only) (0--open, .C--/4

closed, losed, 3/4 closed)

For example, UCN/A/P/C,O,O,O,./lj/l0% would represent the

following condition: UCN, FBS located aft and with porous

material, duct throttle #1 closed, #2, 3, 4 open, and #5

half open, turret located 1 1/4 in. forward of the fairing

and 10% blower suction.
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-II
This condition code is affixed on each set of graphed

data. Where the effects of one parameter is being studied,

that parameter is replaced in the condition code by ",".

This variable parameter * then is represented graphically

with different line symbols which are also keyed on each

graph.

An "X" was placed cn the pressure distribution graphs to

represent the point where turbulence begins, based on the

tuft motion. This eyeball interpretation was, of course,

quite subjective.

For selected trials the pressure coefficients were pre-

sented on a profile view of the turret, and lines of equal

pressure were sketched between the pressure ports. With

these figures another approach to pressure variation over

the turret could be presented.

B. PRESSURE DISTRIBUTION CUT LINES

It tas decided to study three pressure distributions for

each trial, namely spherical, cylindrical, and cylindrical-

spherical. The spherical cut was taken over the top of the

turret. With the FBS aft, this consisted of Ports #28, 20,

19, 24 and 32 representing 6 = 00 to 1800. The cylindrical

cut was taken over the section C-C (Fig. 2) with Po3rts #36,

43, 42, 41 and 40 representing 6 00 to 1800. For the

cylindrical-sphe:ical interface distribution, the cut was

taken over section B-B (Fig. 2) with Ports #28, 35, 34, 33

25



•~00
and 32 representing e 00 to 1800. The ports were selected

on the side opposite any tufts to preclude unnecessary tur-

bulence. Other corresponding ports were used with the PBS

in the side or forward position since rotating this slot also

resulted in the turret rotating.

.t I2
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IV. DATA INTERPRETATION

Table 5 summarizes the conditions of the various runs

and Figures 12 through 89 present pressure distributions

for these runs.

To arrive at optimum (minimum) suction conditions, it

was necessary to compare spherical, cylindrical-spherical,

and cylindrical pressure distributions for appropriate runs.

To determine which run is "better", three points should be

V!;, considered:

1. Any pressure rise is undesirable

2. The pressure need only fall to a minimum required

3. Delayed pressure rise is desirable.

From Table 6, the use of a porous material over the FBS

produced superior pressure distributions when compared to

non-porous. Increasing turret-fairing gap produced worse

pressure distribution (Table 7). Thus, it was determined

best to butt the turret against the nosepiece fair.ing split-

¶ ter plate. The actual suction opening measured between the

tUCN outer, wall lip and turret was 2 inches. While not as
clear-cut as other parameters, FBS location was judged best

in the forward, position (Table 8). Table 9 concluded the

optimum suction duct throttle setting was to fully close #1

and open #2, 3, 4, and 5. Fifteen percent blower suction

was judged to be the minimum acceptable (Table 10). TSR
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door position had negligible effect (Table 11). Furthermore,

when compared to the TSN, better pressure distributions were

produced with the UCN.

Runs #71 (Fig. 87), #79 (Fig. 88), and #18 (Fig. 89) were

selected to illustrate lines of equal C along a turret pro-
p

file view. Constant C lines on Run #71 (optimum conditions)
p

constantly decrease across the turret except in the area

around 9 = 1350 and • = 450 on the sphere. This area pro-

duced a curious tuft pattern on all runs near optimum condi-

tions. Run #79 with the TSN and Run #18 (randomly selected)

produced rising pressures across the turret.

I
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V. -RESULTS

The Reynold's number for these runs at a nominal wind

tunnel velocity of 408 ft/sec was calculated:

Re P . V .

.23769x1.2 lbf-sec• 40.8 ft/sec 16.8 in
,ft4 (1=n

3.8x10-7 lbf-sec
ft2

= 3.57 x l0

From Schlichting [Ref. 4], this value is in the critical

range and turbulent flow could be expected around the tur-

ret. The method of flow control by boundary layer suction

was shown to be a viable method. Optimum flow conditions

P (minimum required suction) were found and illustrated in

Runs #61 and #71.

The tuft motion proved to be an accurate indicator of

flow separation when compared to the rising pressure dis-

tribution curves. For nearly all figures the X's, or flow

separation points, occurred slightly aft of the point where

the pressures began to rise.

The blower mass flow rates, m, as shown on Table 5, are

reasonably constant as one would expect by the continuity

law. The mass flow rates are in excellent agreement for

different runs in which the blower throttle was not changed.

29
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Those runs for which there are differences can best be ex-

plained by inaccuracies in throttle settings. From Runs #61

and #71 mtotal - 4.16 ibm/sec. This suction was distributed

over the turret as shown in Figure 11. The mass flow rate

of streamlines between the turret capture area was calculated

to be 5.90 ibm/sec using turret frontal area equal to

1.89 ft 2 . Thus, the minimum amount of suction required to

obtain quiescent flow at optimum conditions was 70.5% of the

turret capture area mass flow rate. Furthermore, since the

maximum blower air flow capacity was 7700 ft 3 /min, or

9.81 ibm/sec, the 15% blower suction setting actually was

42.4%. Consequently, the blower suction throttle settings

should only be considered as an arbitrary scale and not a

true indication of blower suction capacity.
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V VI. CONCLUSIONS

The concept of using fuselage bleed slot and after-body

fairing suction as a methcd of flow control about an air-

borne laser turret was demonstrated to be effective in low

velocity, incompressible flow. The optimum conditions for

"quiescent flow about the turret were determined to be as

1. A fairing nosepiece shaped like the UCN;

2. The crescent shaped fuselage bleed slot placed forward

at the turret base;

3. Porous sheeting covering the FBS;

4. Suction Duct #1 closed; Ducts #2 - #5 open;

5. The turret moved back against the fairing to provide

6. Blower suction set at 42.4% of maximum cqpacity.
(Note: Max. blower capacity was 7700 ft 3 /min. Whe

minimum required suction was, therefore, 3280 ft /min.
This corresponded to the arbitrary throttle scale
setting of 15%).

Wi Item #4 implies that the fairing height may be reduced

to two-thirds of the turret height. This would permit a

'7 high aft laser shot from the turret.

Item #6 equates to a suction m that is 70.5% of the tur-

ret capture area in. As a proposal, a small turbojet engine

such as the YJ69-T-406 or J85 GE-7 with mass flow rates

of 30 lbm/sec and 42 ibm/sec (sea level static) respec-

tively, could serve as a source of adequate suction at low

31



velocity flight. However, the flow control method and suc-

I . tion source in compressible flow remains to be tested..
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Figure 6. Laser Turret Wind Tunnel Installation
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Figure 87. Turret Profile Pressure Distribution--
Run #71 Port Side
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Figure 88. Turret Profile Pressure Distribution--
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TABLE 1

PARAMETER VARIATIONS

# OF
PARAMETER SETTINGS RANGES

Fairing 2 UCN, TSN
Nosepieces

FBS Location 3 Forward, Side, Aft

FBS Condition 2 Porous, Non-Porous

Suction Duct 3 Open (0), Half-Open
Throttle Setting Closed (C)
(5 ducts)

Turret-Fairing 3 0 in. - 2 1/4 in. by
Gap 1 1/8 in. increments

Blower Throttle 20 0% - 100% by 5%

Setting increments

TSN Door Position 4 Open (0),

One-Fourth Closed

One-Half Closed

Three-Fourths Closed [iC1

122

__ -"-.---



TABLE 2

PRESSURE TAP--S'CAINIVALVE' PORT LOCATIONS

PORT *LOCATION PORT # LOCATION

1 - 11 Ambient Air 29 Turre~t Hemisphere

12 Tunnel Wall--�40,40
Dynamic Proba 30 Turret Hemisphere

13 ~Tunnel Wall-- 90,4=0
Static (Fore) 31 Turret Hemisphere

14 Tunnel Wall�- e = 135u 00

Static 32 Turret Heinisphe~e
15 Tunnel Wall-- a0=180, 4 0

Static 33 Turret Hemisphere

16 Tunnel Wall-- 0=25 = 00

Static 34 Turret Hemisphere
17 Tunnel Wall-- 0 = 27 0 0, 4,=00

Static 35 Turret Hemisphere3

18 Tunnel Wall-- 0 35,, 0
Static (Aft) 36 Turret Cylinder
19~ T=re Tcp

20 Turret Hemiphr 37 Turret Cylinder
0 = 0, 4,=450 8= 45~

21 Turret Hemisphere 38 Turret Cylinder

0=450, 4,=450 0 90 go
22 Turret Hemisphere 39 Turret Cylinder

0~~~~ = 0,4 5 1350
23 Trre Heispere 40 Turret CylinderI

0 1350, 4, 450 e=10

24 Turret Hemisphere 41 Turret Cylinder
e = 1800,4 450 0-25

25 Turret Hemisphere 42 Turret Cylinder
0=2250, 4, 450 0 20

26 Turret Hemisphere 4 urtC~ne
O = 2700, 4,-450 0 = 3150

27 Turret Hemisphere 44Ambient Air
O 3150, 4,=450 45 Scanivalve Calibration

28 Turret Hemisphere 46 -48 Ambient Air
0=00, 4,=00
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TABLE 3

SAMPLE DATA--RUN #71 OPTIMU14 CONDITIONS

TRANSDUCER TRANSDUCER C
PORT VOLTAGE pORT # VOLTAGE

11 -0.038 29 -0.318 -3.12

12 -0.046 30 -0.296 -2.79

13 -0.062 31 -0.166 -0.82

14 -0.112 32 -0.053 +0.89

15 -0.064 33 -0.174 -0.94

16 -0.074 34 -0.287 -2.65

17 -0.068 35 -0.272 -2.42

18 -0.110 36 -0.529 -6.32

19 -0.237 -1.89 37 -0.386 -4.15

20 -0.275 -2.47 38 -0.311 -3.02

21 -0.227 -1.74 39 -0.185 -1.11

22 -0.251 -2.11 40 -0.038 +1.12

23 -0.194 -1.24 41 -0.187 -1.14

24 -0.139 -0.41 42 -0.296 -2.79

25 -0.196 -1.27 43 -0.336 -3.39

26 -0.250 -2.09 44 -0.029

27 -0.220 -1.64 45 -0.038

28 -0.516 -6.12

1 2 3 4 5

Suction Duct Voltages 0 0.147 7.33 2.42 0.0°09

Suction Duct Velocities 0 36.79 47.48 15.93 10.87

Tunnel Velocity--40.8 ft/sec
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TABLE 4

SAMPLE DATA--RUN #82

PORT TRANSDUCER c TRANSDUCER

PORT VOLTAGE .. PORT # VOLTAGE

11 -0.031 29 -0.160 -0.78

12 -0.037 30 -0.252 -2.12
.13 -0.055 31 -0.148 -0.61

14 -0.106 32 -0.047 +0.86
"15 -0.057 33 -0.163 -0.83

16 -0.068 34 -0.257 -2.19

17 -0.063 35 -0.156 -0.72
18 -0.103 36 -0.187 -1.17

19 -0.219 -1.64 37 -0.165 -0.86

20 -0.129 -0.33 38 -0.253 -2.13

21 -0.174 -0.99 39 -0.175 -1.00
22 -0.232 -1.83 40 -0.032 +1.07

23 -0.179 -1.06 41 -0.182 -1.10
24 -0.130 -0.35 42 -0.256 -2.17
25 -0.184 -1.13 43 -0.174 -0.99
26 -0.229 -1.78 44 -0.025

27 -0.163 -0.83 45 +0.006
28 -0.188 -1.19

1 2 3 4 5

Suction Duct Voltages 0 0.078 3.23 5.10 0.047

Suction Duct Velocities 0 23.46 23.65 27.89 21.94

Tunnel Velocity--41.7 ft/sec
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*TABLE 6

POROUS/NOT-POROUS' CONCLUSIONS

FIGURES and FIGURES CONCLUSION

12, 13 14, 15 Porous better SPH
and CYL

16, 17, 18 19, 20, 21 Porous better SPH
and CYL

22, 23, 24 25, 26, 27 Porous better SPH,
CYL-SPH and CYL

59, 60, 62. 71, 72, 73 Porous better SPH,
CYL-SPH and CYL

53, 54, 55 74, 75, 76 Porous better SPH,
CYL-SPH and CYL
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TABLE 7

TURRE'r-FAIRING GAP CONCLUSIONS

FIGURES and FIGURES CONCLUSION

22, 23, 24 0 in. gap better SPH,
CYL-SPH and CYL

25, 26, 27 0 in. gap beU:,"r SPH,
CYL-SPH and CzYL

56, 57, 58 62, 63, 64 0 in. gap better SPH,
CYL-SPH and CYL

53, 54, 55 65, 66, 67 0 in. gap better SPH,
CYL-SPH and CYL
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TABLE 8

FUSELA~GE BL=,D SLOT LOCATI'ON CONCLUS'IONS

FIGURES and FIGUR~ES CONCLUS'ION

12, 13 Forward better SPH

Aft better CYL

14, 15 Inconclusive SPH

Forward Better CYL

16, 17, 18 Aft better SPH
Aft better CYL-SPH
Side better CYL

19, 20, 21 Inconclusive SPH
Aft better CYL-SPH
Forward better CYL

68, 69, 70 Forward better SPHV Inconclusive CYL-SPH
Forward better CYL
Side worst of the three

53, 54, 55 59, 60, 61 Forward better SPH
Inconclusive CYL-SPJ{
Forward better CYL
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TAB3LE 9

SUCTION DUCT THROTTLE CONCLUSIONS

.FIGURES and FIGURES CONCLUSION

28, 29, 30 Combination of both
fairing and FES needed

31, 32 Alternate throttle
closing inconclusive

22, 23, 24 33, 34, 35 .1 t~irottles open
slightly better than all
throttles half closed

36, 37, 38 39, 40, 41 #1 closed produced bet-
tar SPH, C=L-SPH and
CYL; #1 closed slightlybe"ter than #1 half closed

36, 37, 38 42, 43, 44 #1 and #2 closed produced
best SPH, CYL-SPH and CYL
of any two adjacent
throttles closed; not ar•.•/' .•;good as only #1 closed

42, 43, 44 45, 46, 47 #1 and #2 half closed
produced vest SPH, CYL-SPH
and CYL of any two aaja-
ceat throttles half-
closed; slightly better
SPH and CYL-SPH than #I
and #2 closed

48, 49 #4 position insignificant

50, 51, 52 #2 and #3 open produced
better SPH, CYL-SPH and
CYL with #1 closed
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TABLE 10

BLOWER SUCTION CONCLUSIONS

F IGlURS CONCLUSION

53, 54, 55 15% MIN for SPH and CYL

20% MIN for CYL-SPR

56, 57, 58 20% MIN for SPH and CYL

> 20% MIN for CYL-SPII

59, 60, 61 15% M4IN for SPH and CYL

20% MIN for CYL-SPH

62, 63, 64 > 20% MIN for SPH and CYL

20% MIN for CYL-SPH

65, 66, 67 > 20% MIN for SPH, CYL-SPH and CYL

71, 72, 73 15% MIN for SPM and CYL
20% MIN for CYL-SPH

74, 75, 76 20% MIN for SPH
> 20% MIN for CYL-SPH and CYL

J
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I TABLE 11

FAIRING NOSEPIECE CONCLUSIONS

FIGURES CONCLUSION

77, 78, 79, 80, 81, 82, 83 TSN door position had
insignificant effect on
SPH, CYL-SPH and CYL

84, 85, 86 UCN better SPH, CYL-SPH 2
and CYL
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I APPENDIX A

SUCTION DUCT VOLTAGE-TO-VELOCITY

CONVERSION EQUATJIONS

Second degree curve-fit equations were used to convert

the propeller anemometer voltage into velocity in each suc-

tion duct. Note: X represents voltage in volts or m~illi-

volts and Y represents duct velocity in ft/sec.

[I2
Duct #1: Y =-0.0806-X

2 + 6.9037-X + 2.4016 (X in volts)

2
Duct #2: Y -3.9687E-04*X +2.8239E-Ol'X + 3.8530 (X in mV)

rDuct #3: Y =-0.1146-X 
2 + 7.0215-x + 2.1691 (X in volts)

Duct *4: Y =-0..1476-X2 + 5.5755-x + 3.2969 (X in volts)

Duct #5: Y =-7.6316E-04*X 2 + 0.3341-X +7.9236 (X in 1AV)
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APPENDIX B

PRESSURE COEFFICIENT CALCULATION

By definition the pressure coefficient C is
p

I. p - p®

*p q q

where P is the static pressure at the station in question,

PO is freestream static pressure and q is freestream dynamic

pressure. Furthermore, q P.ac" P where P. isimpact COimpact

the freestream total pressure. Relating these to scanivalve

port locations we have:

P " P1 4C = 1 4
S 12 P14

For example, from Table 3 (Run #71) C at Port #19 (or the
p

turret top) the pressure coefficient is

1-C 9 - p14  (-0.237) - (-0.112)
" PI2 P1 4 - --. 046) -- (-0.112)

. It should be noted that the scanivalve output voltages

contain a linear conversion factor which cancels, and hence

the raw transducer voltages can be used to calculate C as
p

illustrated.
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